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Objectives

This proposal supported acquisition of an advanced semiconductor device modeling system to characterize
transistors, diodes and passive element from 45 MHz to at least 110 GHz to enable design and development of
advanced electronic terahertz sensing systems based on both silicon and gallium-arsenide materials. The need
for such systems is becoming increasingly urgent since sophisticated weapons and explosives require
increasingly sophisticated detection technologies. Non-metallic varieties of these threats are especially
important because they elude familiar metal-detecting portals. We have demonstrated in recent and
comprehensive single-pixel studies that threats like these are readily detectable and even identifiable using
broadband-pulsed signals in the microwave and millimeter-wave regime (1--1000 GHz). While traditional
equipment for generating and detecting these frequencies has been hard to use, bulky and expensive, our unique
all-electronic and monolithically integrated technology for generating and detecting these signals can now be
applied to broadband spectroscopic imaging, detecting the reflection spectra of plastic weapons and explosives
on human subjects.

In order to build such systems using foundry fabrication services, new device models are essential, since typical

device models are extracted only up to frequencies of around 1 GHz. The system proposed will exceed this limit
by two orders of magnitude, and enable competent design of compact, multi-pixel imaging and sensing systems

in the terahertz (THz) regime.

This system has contributed directly to the development of such advanced imaging systems, and also supports
the education and training of an entire generation of graduate students who will learn the principles of device
measurement and modeling while applying the results to systems that can enhance security.

Status of effort

We have designed and built both devices (HBT and diode) using the 110 GHz parameter modeling and
extraction system acquired with this DURIP support to realize a number of important circuits and sub-systems
for THz spectroscopy:

e Diodes for phase shifters to enable coherent THz measurement systems

e MOS diodes for advanced nonlinear transmission lines

e Knowledge-On Foundry 60 GHz HBT Large Signal Model Parameter Extraction
e Four-bit prototype DAC (Digital to Analog Converter) running at 10GS/s

e High Speed Broadband Distributed Amplifier

e High instantaneous bandwidth VGA

e Broadband VGA

e 100 GHz Phase Shifter

e LNA (Low Noise Amplifier) Simulation and Fabrication

e Measurements of microfabricated traveling wave tube (TWT) structures

This report covers a sampling of the results we have achieved using this system.
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Accomplishments/New Findings

1. MOS NLTL Design and Simulation

1.1. MOS NLTL Epitaxial Layer Design

Undoped GaAs caplayer, 50A

Undoped AlAs, 300A

N- GaAs layer, conc.=1e15, 1Tum

N+ GaAs buffer layer, conc.= 5e18, 1Tum

(100) N+ GaAs substrate

Fig. 1 MOS NLTL Epitaxial Layer Design

To achieve low-loss nonlinear transmission lines, we have been exploring MOS diodes on GaAs using the
preferential oxidation of AlAs to create a quasi-native oxide layer (see layer design above). This enables
nonlinear C-V behavior without forward-bias conductance, reducing loss. Simulations (below) indicate
extremely nonlinear performance, which in turn promises good harmonic generation in shorter NLTLs,
increasing efficiency.

1.2. MOS Varactor Device Simulation Using MEDICI

Fig. 2. MEDICI simulation of MOS varactor on GaAs

* GaAs with ALOs insulating layer
*  Al,Os allows higher power input and more nonlinearity

* Higher CV ratio and non conducting diode can be achieved
Status: waiting for revised epi layer to be delivered so measurement can commence.




2. Knowledge-On 60 GHz HBT Large Signal Model Parameter Extraction
2.1. GP (Gummel Poon) Model Parameter Extraction Using Agilent IC-CAP
2.2. VBIC (Vertical Bipolar InterCompany ) Model Parameter Extraction Using Agilent IC-CAP
2.3. Phillips MEXTRAM Model Parameter Extraction Using Agilent IC-CAP
Several different models were extracted from HBT structures fabricated by Knowledge-On. These were
subsequently used in circuits described below.

3. Four-bit prototype DAC (Digital to Analog Converter) running at 10GS/s
3.1. Prototype DAC System Schematic
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Fig. 4. Synthesized sine wave simulation from the DAC.

* Simulated sine wave is 125MHz at f, = 1/8*f;x with 1GS/s input




t

3.3. Fabricated DAC Chip

3.4. DAC Measurement
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Fig. 6. Measured (synthesized) sine wave from DAC.

» Synthesized sine wave is 375MHz at f, = 1/8*f; with 3GS/s input.

*  The spectrum analyzer shows 38dBc dynamic range between the fundamental signal and higher order

harmonics.

Fig. 7. Maximum INL measurement

* The maximum Integral Nonlinearity Error (INL) derived from this measurement is 2 LSB.

Status: project completed.

4.1. 100 GHz Phase Shifter Simulation Results

4. 100 GHz Phase Shifter




This phase shifter has low pass filter structure and it has cut-off frequency at

_ 1
Jee = JIICi+Ca(V)]

By making its cut-off frequency above 100 GHz using the proper diode size, we can realize as 100 GHz phase
shifter. The followings are simulation results for this circuit:
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Fig. 8. 100 GHz Phase Shifter Simulation Results _ ’

4.2. Phase Shifter Layout
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Status: Circuit will be fabricated using MOS diode structures described above; waiting for epi wafers.



5. LNA (Low Noise Amplifier) Simulation and Fabrication
5.1. LNA Schematic and Simulation Result

Fig. 10. LNA Simulation Schematic
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Fig. 11, Simulated results about gain and noise figure

5.2. LNA Chip Fabrication and Measurement
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Fig. 12. Measured Gain S;; and Chip Photo
Status: project completed.
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Interactions/Transitions

Participation at meetings: Invited to and participated in several international terahertz reviews in Oslo,
Link6ping, Sweden, the UK and Italy (see above).

Consultative and advisory functions: none during the period

Transitions: Our technology is under consideration for a wide variety of security applications, in both military
and civilian venues.

New discoveries: (none this year).

Honors/Awards: (none during the period)



